Overview | Long Description | Linear algebra: matrices, matrix addition, matrix multiplication, inverses, special matrices; vector spaces, basis and dimension, linear independence, rank, determinants; linear transformations, projection, orthogonality, systems of linear equations, Gaussian elimination, LU decomposition; eigenvalues and eigenvectors. Vector calculus: 3-D vector space and algebra; vector differential calculus, gradient, divergence, curl; vector integral calculus, Green’s theorem, Gauss’s theorem, Stoke’s theorem. Not for students who have taken ENGG1410. Pre-requisite: MATH1510. | 線性代數:矩陣、矩陣加法、矩陣乘法、逆矩陣、特殊矩陣;向量空間、基底、依據、維、線性獨立、秩、行列式;線性轉換、向量投影、正交性、線性方程組、高斯消元法、LU 分解;特徵值和特徵向量。向量微積分:三維向量空間及代數;向量微分、梯度、發散度、旋度;向量積分、格林定理、高斯定理、斯托克斯定理 |